Lateral \& Gravity Design

[-WINDTESTGN:]
$\bar{P}_{\mathrm{s}}^{-}=\bar{\lambda} \bar{w}_{\mathrm{w}} \overline{\mathrm{P}}_{\mathrm{s} 30} \overline{\mathrm{~K}}_{\mathrm{zt}}$

$\mathrm{P}_{\mathrm{s} 30}=$
Wind Exposure Category as set forth in Section 26.7 of ASCE 7-16
Basic Wind Speed (LRFD) as used in Figure 28.5 of ASCE 7-16 and converted to (ASD)
Simplified design wind pressure for Exposure B, at $\mathrm{h}=30$ feet and for $\mathrm{I}=1.0$, from Figure 28.5-1

$$
\begin{array}{rl|}
\mathrm{I}_{\mathrm{w}} & =1 \\
\lambda & =1.29 \\
\mathrm{~K}_{\mathrm{ZT}} & =1.67 \\
\hline
\end{array}
$$

Importance factor as defined in Table 1.5-2 of ASCE 7-16
Adjustment factor for building height and exposure from Figure 28.5-1 of ASCE 7-16
Adjustment factor for increased wind speed due to a hill or escarpment from Section 26.8 of ASCE 7-16
Roof slope:

\[

\]

) $=18.4$ degrees
) $=18.4$ degrees

0
Average uplift (F/R)=
Average uplift $(R / L)=$ \square Based on wind zones ' G ' and ' H ' Based on wind zones ' G ' and ' H^{\prime}

$P_{s 30}=$	End zone of wall__ Left/Right Front/Rear 		End zone of roof	
			Front/Rea	t/Right
	$\mathrm{A}=15.4 \mathrm{psf}$	15.4 psf	$\mathrm{B}=-4.4 \mathrm{psf}$	-4.4 psf
	33.2 psf	33.2 psf	-9.4 psf	-9.4 psf

$\mathrm{P}_{\mathrm{s} 30}=$| Interior zone of wall | | | |
| :---: | :---: | :---: | :---: |
| Front/Rear | Left/Right | Interior zone of roof | |
| $\mathrm{P}_{\mathrm{s}}=$ | Front/Rear | | Left/Right |
| 10.3 psf | 10.3 psf | $\mathrm{D}=-2.4 \mathrm{psf}$ | -2.4 psf |
| 22.1 psf | 22.1 psf | -5.2 psf | -5.2 psf |

WIND LOAD CALCULATIONS
 FRONT \longrightarrow REAR

$\Sigma \mathrm{V} 2 \mathrm{ND}$ FLOOR $=$

WIND ZONE	B	D	D		A	C						
AVE. HEIGHT	6	6	6		4	4						
AVE. WIDTH	11	26	35		11	26						
Ps	0.00	0.00	0.00	0.00	33.18	22.12	0.00	0.00	0.00	0.00	0.00	0.00
SUBTOTAL	0	0	0	0	1460	2301	0	0	0	0	0	0

TOTAL	5,800 lbs

Minimum net pressure controls. The calc. pressure is less than the min. net pressure, equal to $16 p s f(A-C)$, and $8 p s f(B-D)$ applied over the entire area. (ASCE 7-16 28.5.3)

โV IST FLOOR =

WIND ZONE	A	C										
AVE. HEIGHT	9	9										
AVE. WIDTH	11	57										
Ps	33.18	22.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SUBTOTAL	3285	11348	0	0	0	0	0	0	0	0	0	0
TOTAL	$14,633 \mathrm{lbs}$											

NOT USED

WIND ZONE												
AVE. HEIGHT												
AVE. WIDTH												
Ps	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SUBTOTAL	0	0	0	0	0	0	0	0	0	0	0	0

[^0]0 lbs \qquad

WIND LOAD CALCULATIONS

LEFT \longrightarrow RIGHT

WIND ZONE	A	C	A	C								
AVE. HEIGHT	5	5	4	4								
AVE. WIDTH	8	41	9	68								
Ps	33.18	22.12	33.18	22.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SUBTOTAL	1327	4535	1194	6017	0	0	0	0	0	0	0	0
TOTAL	3,0											

NOT USED

WIND ZONE												
AVE. HEIGHT												
AVE. WIDTH												
Ps	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SUBTOTAL	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	$0 \mathrm{lbs}-----------------------~$	0										

2ND FLOOR CALCULATIONS:

Plate Height:	8.00 ft
Total length of Shearwall in Shortest Line:	12.00 ft
Length of Shortest Segment within Shear Line:	3.00 ft
Length of Longest Segment in Shear Line:	3.00 ft

Tributary Area: 1.0
Total Area: 2.0
$\boldsymbol{\rho}=$
ASCE
7-16 12.3.4.2 b

MAIN FLOOR CALCULATIONS:

Plate Height:	8.00 ft
Total length of Shearwall in Shortest Line:	9.00 ft
Length of Shortest Shearwall within Shear Line:	3.00 ft
Length of Longest Wall in Shear Line:	3.00 ft

Tributary Area:	1.0
Total Area:	2.0

$\rho=[-1.00]$
ASCE 7-16 12.3.4.2 b
NOT USED:
Plate Heigh h of Shearwall in Shortest Line:

$:$| 10.00 ft |
| :---: |
| 10.00 ft |
| 4.50 ft |
| 5.50 ft |

Tributary Area:	1.0
Total Area:	2.0

Job\# 23-032

```
SEISMIC DESIGN: i
- =
\(E=\rho Q_{E}+2 S_{D S} D\)
\(Q_{E}=V=C_{s} W\)
```

ROOF DEAD LOAD $=15.0 \mathrm{psf}$ UPPER FLOOR D.L. $=15.0 \mathrm{psf}$ LOWER FLOOR D.L. $=15.0 \mathrm{psf}$ FLOOR LIVE LOAD = 40.0 psf

Geotech Report No 20\% Seismic Load Increase
Importance factor as defined in Table 11.5-1

Total height of structure

$\mathrm{V}=0.7 \mathrm{~S}_{\text {DS }} \mathrm{l}_{\mathrm{E}} \mathrm{W} / \mathrm{R}$	$S_{\text {DS }}=2 / 3 S_{\text {MS }}$
$\mathrm{V}_{\text {max }}=\mathrm{S}_{\mathrm{D} 1} \mathrm{l}_{\mathrm{E}} \mathrm{W} / \mathrm{T}_{\mathrm{a}} \mathrm{R}$	$S_{\text {MS }}=(\mathrm{Fa})(\mathrm{Ss})$
$\mathrm{T}_{\mathrm{a}}=0.02 \mathrm{~h}^{0.75}$	$S_{\text {D } 1}=2 / 3 \mathrm{~S}$
$\mathrm{T}_{\mathrm{a}}=0.22 \mathrm{~s}$	$\mathrm{S}_{\mathrm{Ml} 1}=(\mathrm{Fv})\left(\mathrm{S}_{1}\right)$

Ss $=$	146.7\%
$\mathrm{Fa}=$	1.20
$\mathrm{S}_{1}=$	50.8\%
$\mathrm{Fv}=$	1.50

$$
\begin{aligned}
& S_{M S}=176.0 \% \\
& S_{D S}=117.4 \% \\
& S_{M 1}=76.2 \% \\
& S_{D 1}=50.8 \%
\end{aligned}
$$

$\mathrm{V}=$	$\quad 0.126$
$\mathrm{E}=$	O
$\mathrm{Cs}=$	$0.126!\mathrm{w}$
	0.126

2ND FLOOR DIAPHRAGM LOADING:

$\mathbf{W}($ ROOF $)=$| LENGTH | WIDTH | LOAD | TOTAL |
| :---: | :---: | :---: | :---: |
| 52 | 28 | 15.0 | 21840 |
| 17 | 3 | 15.0 | 765 |
| | | 15.0 | 0 |
| | | 15.0 | 0 |
| | | 15.0 | 0 |

$\mathbf{W}($ FLOOR $)=$| Area $=1507$ | | Sub-Total $=22605$ | |
| :---: | :---: | :---: | :---: |
| | | | 15.0 |
| | | 15.0 | 0 |
| | | 15.0 | 0 |
| | | 15.0 | 0 |
| | | 15.0 | 0 |
| | Area $=0$ | WIDTH | LOAD |
| | Sub-Total $=$ | 0 | |

150	4	10.0	6000
75	4	10.0	3000
		10.0	0
		10.0	0
		10.0	0
Sub-Total $=9000$			

NOT APPLICABLE

W (ROOF) = | LENGTH | WIDTH | LOAD | TOTAL |
| :--- | :--- | :---: | :---: |
| | | 15.0 | 0 |
| | | 15.0 | 0 |
| | | 15.0 | 0 |
| | | 15.0 | 0 |
| | | 15.0 | 0 |
| Area $=0$ | | | |

| $\mathbf{W}($ FLOOR $)=$LENGTH WIDTH LOAD TOTAL
 15.0 0
 Sub-Total $=0$ |
| ---: | :--- | :---: | :---: |

$\mathbf{W}(W A L L)=$| LENGTH | TRIB. HT. | LOAD | TOTAL |
| :--- | :--- | :--- | :--- |

		10.0	0
		10.0	0
		10.0	0
		10.0	0
		10.0	0
Sub-Total $=0$			
	TOTAL $=\mathrm{lb}$		

ST FLOOR DIAPHRAGM LOADING:

$\mathrm{W}(\mathrm{ROOF})=$	LENGTH	WIDTH	LOAD	TOTAL
	41	30	15.0	18450
			15.0	0
			15.0	0
			15.0	0
			15.0	0
	Area =	1230	Sub-Total $=$	18450
$\mathrm{W}(\mathrm{FLOOR})=$	LENGTH	WIDTH	LOAD	TOTAL
	49	25	15.0	18375
	13	3	15.0	585
			15.0	0
			15.0	0
			15.0	0
	Area $=$	1264	Sub-Total $=$	18960
$\mathrm{W}(\mathrm{WALL})=$	LENGTH	TRIB. HT.	LOAD	TOTAL
	150	8	10.0	12000
	150	8	10.0	12000
			10.0	0
			10.0	0
			10.0	0
	Area $=$	2400	Sub-Total $=$	24000

$$
\begin{array}{cll}
\mathrm{V}(2 \mathrm{ND} \text { FLOOR })= & .126 \times 31605 \mathrm{lb}= & 3994 \mathrm{lbs} \\
\mathrm{~V}(1 \mathrm{ST} \text { FLOOR })= & .126 \times 61410 \mathrm{lb}= & 7761 \mathrm{lbs} \\
\mathrm{~V}()= & .126 \times \mathrm{lb}= & \mathrm{lbs}
\end{array}
$$

$\Sigma \mathrm{V} \times \rho$	height	$\Sigma \mathrm{V} \times$ height			
3994 lb	17	67906			
7761 lb	8	62092			
lb		0			
11756 lb	TOTAL $=$				129998

$\mathrm{E}(2 \mathrm{ND})=$	$\frac{\Sigma \mathrm{V} \times \text { height } \times \Sigma \mathrm{V} \text { TOTAL }}{\Sigma \mathrm{V} \times \text { height TOTAL }}=6141 \mathrm{lbs}$
$E(1 S T)=$	$\frac{\Sigma \mathrm{V} \times \text { height } \times \Sigma \mathrm{V} \text { TOTAL }}{\Sigma \mathrm{V} \times \text { height TOTAL }}=5615 \mathrm{lbs}$
$\mathrm{E}(\mathrm{O})=$	$=0 \mathrm{lbs}$

USE 15/32 CDX ROOF SHEATHING OR 3/4 T\&G CDX SUBFLOORING w/8d AT 6 in o/c(PANEL EDGE), END 8d AT 12in o/c(PANEL FIELD)

Г-CHORD:--

Since T allowable is greater than T applied, OK.
SHEAR CAPACITY OF 10d COMMON NAIL $=102 \mathrm{lbs} \quad 102 \times \mathrm{Cd} \times \mathrm{p}=136 \mathrm{lbs} \quad 2018$ NDS
\# OF NAILS PER 4 FT SPLICE $=\frac{1610 \mathrm{lbs}}{136 \mathrm{lbs}}=12$

USE 2×4 HF \#2 TOP PLATE W/ (2) 10d NAILS @ 8 in O/C.

iLateral Calculation Key

$\mathrm{V}=$ Shear, plf
$\mathrm{H}=$ Height of shearwall
L = Length of shearwall
P1 = Weight of shearwall and connected framing
P2 $=$ Weight of adjacent wall
$\mathrm{T}=\mathrm{V} \times \mathrm{H}-0.5 \mathrm{P} 1-\mathrm{P} 2=$ Tension reaction to be resisted by holdown
$\mathrm{C}=\mathrm{V} \times \mathrm{H}+0.5 \mathrm{P} 1=$ Compression reaction

For calculation of tension and compression forces in compliance with ASCE 7-16 2.4.1
Tension Equations (Uplift)

7. $0.6 \mathrm{D}+\mathrm{W}$ 8. $\left(0.6-0.14 \mathrm{~S}_{\mathrm{DS}}\right) \mathrm{D}+\mathrm{E}$		
${ }^{*} 8 .\left(0.6-0.14 \mathrm{~S}_{\mathrm{DS}}\right) \mathrm{D}+2.5 \mathrm{E}$		

Compression Equations
5. D + W
5. $\left(1+0.14 \mathrm{~S}_{\mathrm{DS}}\right) \mathrm{D}+\mathrm{E} \longrightarrow 1.16 \mathrm{D}+\mathrm{E}$
6. $D+0.75 \mathrm{~W}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$
$6 .\left(1.0+0.105 \mathrm{~S}_{\mathrm{DS}}\right) \mathrm{D}+0.75 \mathrm{E}+0.75 \mathrm{~L}+0.75 \mathrm{~S} \longrightarrow 1.12 \mathrm{D}+0.75 \mathrm{E}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$
*5. $\left(1+0.14 \mathrm{~S}_{\mathrm{DS}}\right) \mathrm{D}+2.5 \mathrm{E} \longrightarrow 1.16 \mathrm{D}+2.5 \mathrm{E}$
*6. $\left(1.0+0.105 S_{D S}\right) D+1.875 \mathrm{E}+0.75 \mathrm{~L}+0.75 \mathrm{~S} \longrightarrow 1.12 \mathrm{D}+1.875 \mathrm{E}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$

* Equations include overstrength factor.

Note: The 0.7 factor for Earthquake loading has already been incorporated into the calculation of the lateral design force E_{h}, but not E_{v}. Therefore this factor has been omitted from equations 5,6 and 8 where appropriate.

[^0]: TOTAL

